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Procedures are developed to derive the etching shapes encountered in conventional crystal 
etching and in localized crystal dissolution. These procedures are used to predict the shapes 
produced on class 2 3 crystals. Problems of practical importance in photolithography 
techniques, such as the extent of the underetch, the bordering angle and the etched shape 
of star-like structures, are studied. In some cases the results are compared with those 
obtained from geometrical constructions based on Wulff's procedure. 

1. I n t r o d u c t i o n  
Over the past few years, the prediction of etching 
shapes such as hillocks and pit formation [1-6], and 
of limiting shapes for starting cylindrical hollows or 
cylindrical crystals [7, 8] has often been based on the 
two criteria stated by Batterman [9-11], and later on 
the kinematic model of dissolution proposed by Frank 
1-12, 13]. The Frank model in particular gives us the 
necessary tools to construct geometrically the etching 
shapes encountered in localized growth [14, 15], i.e. at 
the edge of an inert mask. Such constructions resemble 
Wulff's plots [16] and require experiments on differ- 
ently oriented wafers to estimate with sufficient accur- 
acy the polar plot corresponding to a cross-section of 
given orientation. 

Recently, new theoretical concepts have been de- 
veloped for deriving analytical expressions of the dis- 
solution slowness surface using a tensorial repre- 
sentation of anisotropic etching [17-21]. In Part I of 
this work [21] calculations are performed for all cubic 
classes and applied to class 2 3, and emphasis has been 
placed on the selection of the higher rank to obtain 
slowness surfaces with complex shapes. In Part II, we 
develop new procedures to analyse the dissolution 
shapes of crystals and the cross-sectional shapes res- 
ulting from etching processes at mask edges. Since the 
trajectory of a surface element of given orientation can 
be derived from the equation of the slowness surface 
[22], all the procedures start with the analytical ex- 
pression of the slowness surface. 

It is also of interest to compare the geometrical 
procedures with the present method. The construction 
method, as well as the new procedure, is applied to 
various etching situations. We also examine simple 
configurations and end by studying complex struc- 
tures such as star-like structures [23, 24]. Except in 
one section, all the graphical simulations presented in 
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this work refer to polar diagrams of the dissolution 
slowness illustrated in Part I [21]. 

2. Dissolution shapes of starting 
circular sections 

In this section we deal with the etched shapes of 
differently orientated sections when we start with a 
cylindrical hollow, or conversely with a cylindrical 
crystal. For a planar section whose orientation is 
defined by the angles q~ = q00 + 90 ~ 0 = 0 ~ these 
shapes can be determined from the polar graph of 
L(q%, 0) involving varying values of the angle 0. Since 
the polar graph presents a series of maxima and 
minima, the final shape of the etched section can be 
crudely constructed from the polar graph of L using 
the reciprocity condition for etching proposed by 
Irving [10]. A concave intersection formed by two 
initial planes is stable provided there is no plane 
between them with a smaller normal etch rate; conver- 
sely, a convex intersection remains stable when there is 
no plane between them with a higher etch rate When 
these conditions are not met the dissolution causes the 
development of curved portions of etched '~rofiles: 
When we are concerned with initially circular sections 
we can conveniently restate the stability criteria as 
follows. 

1. For concave intersections, i.e. when we start with 
a cylindrical hollow, the final dissolution shape is 
composed of limiting planes which correspond to 
maxima in the dissolution slowness. The rounded 
portions of the final dissolution shape can be at- 
tributed to the presence of minima in ILl. 

2. For convex intersections, i.e. for a starting cylin- 
drical crystal, the development of limiting planar 
facets during the chemical attack can be associated 
with the minima in the dissolution slowness, whereas 
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the curved portions can be correlated to the maxima 
in ILl. 

The use of the stability theorems 1 and 2 allows us 
to construct geometrically the approximate etched 
shape of an initially circular section. It is sufficient to 
draw the normals n(q~o, 0~) to the particular elements 
forming the starting section, for which the dissolution 
slowness passes through an extremum at angle 0~, 
and to retain the etch rate, R, given by R(q~o, 0) 
= ( I L (q~o, 0) r )- 1. The approximate dissolution shape 
is then formed by the limiting planes which are some- 
times joined together by curved faces. The results of 
these simplified geometrical constructions involving 
the polar diagrams displayed in Figs 4 and 5d of Part 
I, [21], respectively, are given here in Figs 1 and2. 

This approximate procedure is suitable when the 
polar graph of L is obtained from experiments: in 
practice, when only the etch rate as a function of 
orientation is partially known. But as soon as the 
equation for the slowness surface is completely deter- 
mined, better information on the exact dissolution 
shapes can be obtained by numerical methods. For 
this purpose we have developed numerical simulations 
for the graphical representation of the dissolution 
shapes of initially circular sections. The principal sub- 
routines which are incorporated in the program are 
listed in Fig. 3. We observe that the angle of cut, r 
which is needed to work with a given polar graph is 
used as a fundamental input. The program then calcu- 
lates the propagation vector P(~o, 0) corresponding to 

the successive planar elements of orientation (%, 0) 
which compose the starting circular section. In addi- 
tion a test is made to distinguish between diverging 
and converging trajectories [12, 13, 18] and then to 
eliminate the etched elements which make no contri- 
bution at all to the final section. The results of the 
graphical simulation which are illustrated in Figs 4 
and 5 can be compared with the geometrical construc- 
tions of Figs 1 and 2, firstly to be precise about the real 
contribution of extrema to the formation of limiting 
facets, and secondly to emphasize (if possible) the role 
played by the relative amplitude of successive minima 
and maxima in the extent of the curved portions and 
of the limiting planar facets. The following conclusions 
can be drawn. 

l. According to theorem l, and as we start with a 
cylindrical hollow of finite radius ro, we observe that 
the maxima in L give rise to slightly curved limiting 
facets. The more accentuated the maximum, the more 
rapidly the limiting facet of the etched section becomes 
planar (see for example the facets in Fig. 4c associated 
with the maxima M2 and M a as indicated in Fig. 5d of 
Part I 1-21]). Simultaneously, the extent of successive 
limiting facets is directly correlated with the relative 
amplitude of the successive maxima. In reality, as 
clearly evinced by Fig. 4c, the extent of a facet 
increases with the amplitude of the maximum pro- 
vided this maximum remains pronounced (compare, 
for example, the development of the facets related to 
the maxima M 1 and M 4 in Fig. 5d of Part I [21]). 
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Figure 1 Theoretical  dissolution shapes of a start ing cylindrical 
hollow as est imated from geometrical  constructions.  (a) Nma x = 6, 
(Do = 0~ (Fig. 4b, Par t  I [21]); (b) Nm~ x = 8, (Do = 0~ (Fig. 4c, [21]); 
(c) Nm~ x = 10, (Do = 60~ (Fig. 5d, [21]). The etched shapes are 
symmetrical  about  the vertical axis. 
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Figure 2 The theoretical dissolution shapes of a start ing cylindrical 
crystal as est imated from geometrical  constructions.  (a) Nm, x = 6, 
([o = 0~ (Fig. 4b, Par t  1 [21]); (b) Nm, x = 8, (Do = 0~ (Fig. 4c, [21]); 
(c) Nm,x = 10, (Do = 60~ (Fig. 5d, [21]). The etched shapes are 
symmetrical  about  the vertical axis. 
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Figure 3 Flow chart  of simulation. 
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Figure 4 Graph ica l  s imula t ions  of the d issolu t ion  shapes  of a start-  
ing cylindrical  hollow. (a) Nm,x = 6, `4o = 0~ (Fig. 4b, Par t  I [21]); 
(b) Nma , = 8, `4o = 0~ (Fig. 4c, [21]); (c) Nm, x = 10, `4o = 60~ (Fig. 6, 
[21]). 

2. For a cylindrical crystal, minima in L give rise to 
limiting facets whose extension is now determined by 
the amplitude of the minima. Here again, pronounced 
minima cause rapid development of planar facets of 
large extent. When the minimum can be treated as a 
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Figure 5 Graphica l  s imula t ions  of the d issolu t ion  shapes  of a start-  
ing cylindrical  crystal.  (a) Nma X = 6, `4o = 0~ (Fig. 4b, Par t  I [21]);  
(b) Nma x = 8, '4o = 0~ (Fig. 4c, [21]); (c) Nma , = 10, "4o = 60~ (Fig. 6, 
[21] ). 

small perturbation, the extent of the corresponding 
facet becomes very limited. 

3. Curved portions of the etched sections of a cylin- 
drical hollow are formed around the minima in L. 
Conversely, elements whose orientation are in the 
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vicinity of an orientation associated with a maxima in 
L contribute to the curved, etched regions of an 
initially circular crystal. These contributions to the 
etched sections arise when the extremum under con- 
sideration lies between two extrema of different nature 
and slight amplitude (see for example the formation of 
the curved portions in Figs 4c and 5c due to the 
respective minimum m 3 and maximum M4). All these 
conclusions corroborate the proposed theorems. 

3. Applications to combined etching 
and lithography techniques 

This section includes the theoretical results required 
for a correct prediction of the geometrical features of 
dissolution shapes obtained by anisotropic chemical 
photolithographic processes. 

3.1. Dissolution cross-sectional profiles 
at a mask edge 

For an etched linear stripe the elements forming the 
sides of the etched cross-section are only composed of 
concave intersections; therefore in the following we 
are only concerned with theorem 1 (see Section 2). The 
unmasked surface dissolves at a constant slowness and 
remains parallel to the initial flat surface. Under the 
inert mask, the etched profile can be characterized by 
the extent of the underetch U corresponding to the 
distance O U (Fig. 6) and by the angle 1, which is the 
angle of the bordering etch plane (or bordering ele- 
ment) to the wafer surface. In practical applications 
such as micromachining, a precise knowledge of U 
and y is highly desirable. 

the dissolution slowness in the development of curved 
portions and in the faceting of the etched cross- 
sectional profile. Firstly, we work with various polar 
graphs corresponding to singly rotated planes, and 
secondly for a given polar graph we change the por- 
tion of the graph involved in the theoretical simu- 
lation. Fig. 6 includes a brief description of the geo- 
metry, but some explanatory comments are needed. 
The direction of the normal n a to the plane (0zy')  
coincides With the x' axis related to the singly rotated 
slice (0x'z ')  of orientation q~ = q~o, 0 = 0 ~ and we 
assume that the original slice to be etched corresponds 
to the plane (0x'y'), i.e. to the plane (0xy). The 
successive etched slices are then obtained by rotating 
the original slice of an angle ~ about the normal n a. It 
is obvious that the etched section at the mask edge is 
composed of elements whose orientations are detected 
by means of an angle fl* (Fig. 6c) lying in the range 
(90 270~ In this condition, as ~ varies we have only 
to consider different portions of the polar graph ob- 
tained by fixing to q~o the value of the angle of cut, ~, 
to construct geometrically the successive theoretical 
cross-sections. To permit an extensive investigation, 
more and more complicated polar graphs are studied 
and for a given polar graph the successive etched slices 
have orientations for which the dissolution slowness 
passes crudely through an extremum. Applying simply 
theorem 1 (Section 2) we obtain the predicted cross- 
sectional morphologies of Tables I III which are 

T A B L E  I Etched cross-sectional profiles as obtained from sim- 
plified geometrical constructions, where % = 60 ~ and Nmax = 4. 
The inward normal, no, to the etched surface lies parallel to O M  i or 

Om i 

3. 1.1. Etched sections and polar graphs 
In this section we specify the role played by extrema of 

Z,Z' 

y, 

.y (G) 

Extremum:M~ or m~ ~ Etched section 

M1 0 ~ / 

m 1 55 ~ 

M 2 125 ~ / 

m 2 180 ~ ~ k  

T A B L E  I I  Etched cross-sectional profiles as obtained from geo- 
metrical constructions where q% = 60 ~ and Nma , = 6. 

Extremum:M~ or m~ c~ Etched section 

M~ 0~ 7 
m 1 55 ~ ~ * 

M2 117 ~ / 

m 2 145 ~ 

M 3 180 ~ 

_ o _ r i ~  , (b) Y" 

to}~%ew Y' .y, 

E" 90o 

- - - - ~ 2 7 0  o 
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Figure 6 Localized etching on differently oriented slices. (a) Geo- 
metry of slices; (b) polar diagram and orientation of the inert mask 
of extent 01~; (c) cross-sectional view of the etched profile and 
geometrical parameters involved in the numerical simulation. * Scales di,vided by two. 
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based on the polar diagrams displayed in Fig. 5a, b 
and d of Part I [21]. To draw these profiles we 
suppose that the two successive facets are never joined 
together by a rounded portion corresponding to 
converging trajectories associated with minima rn~ of 

T A B L E  I I I  Etched cross-sectional profiles as obtained from 
geometrical constructions where q0 o = 60 ~ and Nm. x = 10 

E x t r e m u m : M  i or m~ ct Etched section 

Mz O~ 7 

mx 35 ~ ~ * 

M 2 55 ~ ~ * 

m2 80~ L * 

M3 

r r / 3  

117~ / 

145~ 

M 4 180 ~ ~ _ _  

* Scales divided by two. 

the dissolution slowness, even when the etched slice 
has a minimum slowness. 

The graphical simulation gives more details. In the 
following, to avoid confusion, the etched reference 
surface is designated by means of its angle of rotation 
~, and by means of its dissolution slowness vector 
which lies parallel to the inward normal n to the 
surface. The inert mask is located in I~0 where O is the 
origin of the polar diagram (Fig. 6). Starting with the 
polar graph of Fig. 5a of Part I [21] and with reference 
surfaces lying perpendicular to OMt, Om~, OM 2 and 
Om2, w e  obtain the respective cross-sectional profiles 
of Fig. 7a-d. We observe that in several cases we 
obtain curved facets rather than the planar facets 
expected theorem 1 (Section 2). This may be inter- 
preted in terms of small maxima in L with respect to 
the value of the minimum dissolution slowness at m2. 
Effectively, the limiting facets associated with the max- 
ima M~ and M2 do not appear in the respective cross- 
sectional profiles of Fig. 7a and d. But examination of 
Fig. 7b and d reveals also that the respective minima 
m I and m 2 contribute to the rounded portions bc of 
these dissolution profiles. Introducing for Nm, x = 6 
(Fig. 5b, Part I [21]) a minimum mz of greater ampli- 
tude gives rise to a rounded region whose extent seems 
of more importance (Fig. 8b). Moreover changing the 
small perturbation m 2 in Fig. 5a (Part I [21]) by a 
small perturbation, M 2 of different nature (Fig. 5a, 
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Figure 7 Theoretical cross-sectional profiles for differently oriented slices whose 
with (a) a M  1 (b) Oral  (c) a M  2 and (d) a m  2. Nmax = 4, q~0 = 60~ 
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5599 



u 

-t- 
,r 

10 

5 

0 

-5 

-10 

(a) 

Angle of rotation: 0 

I l l l l T / l ~ i l ~ i l I J ~  . . . . . . . . . . . . . .  

-6 -2 2 6 10 14 18 
YJ' axis length (p.m) 

10- 

E 
z:k 

5 -  

.E 

E 

o; -s I 
-10 

(b) 

Angle of rotation : 55 

i r ~ I i r 

- - 2  2 6 10 14 18 
Y 'ox i s  length (I-tm) 

10 

-g 
=:L 

5 
~o 

-~ 0 

E 
-5 

go 

-10 

Angle of rotation: 117 

I I I I l , , l l l k l l l l ~ T I  . . . . . . . . . . . . . .  

C 

I i ~ I T r i 

-6 -2 6 10 14 18 
(c) Y" axis length (lira) 

10 

E =L 
- -  5 
~a 

= 0 
.E 

2 -5 
g 

-10 

Ancjle of rotation : 180 

)1 I I I I I I P I  k l l l ~  

1 a i ~ I r i 

-6  -2 2 6 10 14 18 
(el Y"axls lenqth (~m) 

Part I [21]) does not modify significantly the shape of 
the etched profile if the orientation of the reference 
surface corresponds to that of the small perturbation 
(compare Figs 7d and 8e). The curved portions b c in 
Fig. 8a and c can be understood in terms of the 
diverging trajectories of elements whose dissolution 
slowness lies in the respective vicinity of P'~ and Pt.  
These observations are corroborated by the results 
derived for qo 0 = 60 ~ and Nmax = 10 (Fig. 5d, Part I 
[21]). The cross-sectional profiles displayed in Fig 
9a-h allow us to draw the following conclusions. 

1. The maxima in L contribute to all the faceted 
portions of the dissolution cross-sectional profiles. 

2. Flat regions tend to intersect to form a distinct 
obtuse or acute angle, provided a pronounced min- 
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Figure8 Theoret ical  cross-sect ional  profiles for var ious  slices 
whose d issolu t ion  s lowness  vector coincides (Fig. 5b, Par t  I [21])  
with (a) a M 1 ,  (b) a m 1 ,  (c) a M 2 ,  (d) a m  2 and  (e) a M  3. N,,a~ = 6, 
and  % = 60 ~ 

imum lies between two successive sharp maxima 
(Fig. 9d and f). 

3. Even a minor maximum in L (M4 in Fig. 5d, Part 
I [21]) causes the development of an intermediate 
facet bc (Fig. 15h) if the relative amplitudes of the 
extrema involved in the simulation remain of compar- 
able importance. This point has previously been made 
by Shaw [14, 15]. 

4. The shape of the etched profile enlarges but does 
not change with repeated etchings, as evinced by 
Fig. 9h. This remark agrees well with previous obser- 
vations by Shaw [14, 15] who noticed that the basic 
cross-sectional profile will be independent of the ex- 
tent of etching, as confirmed by experiments. 

5. The relative apparent extent Ua of the crudely 
planar facet associated with the maximum M 1 in 
Fig. 5d (Part I [21]) is more accentuated when the 
reference surface coincides with a maximum of L (Figs 
9c and e) than with a minimum (Fig. 9b). 

6. In Fig. 9e, the slightly curved portion a b can be 
attributed to diverging trajectories associated with 
elements whose orientation is in the range (P2-M3). 
These elements mask the slight contribution of the 
maximum Mz to the etched profile. Similar behaviour 
is observed in Fig. 9a. 
All these remarks show the complexity of the anisotro- 
pic dissolution process, and explain why the approx- 



imate geometrical construction fails in some cases to 
derive the exact theoretical cross-sectional profiles. 

3. t.2. Underetch U and bordering angle y 
For the fabrication of micromechanical devices by 
combined selective anisotropic etching and litho- 
graphy techniques, it is interesting to present some 
quantitative results which characterize the anisotropy 
of a given etchant system: on the one hand, the angle 7 
related to the etch-bordering element that develops 
during the chemical attack and sometimes coincides 
with a limiting facet, and on the other hand, the extent 
of the underetch U. Of course for the geometrical 
constructions displayed in Tables I-III  the theoretical 
value of the bordering angle y is directly connected to 
the orientation of the profile element, for which the 
dissolution slowness passes through a maximum. But 
because of the complexity of the anisotropic dissolu- 
tion, the numerical values of the angle y, as computed 
from the graphical simulation (Table IV) by evalu- 
ating the slope of the profile element just beneath the 
inert mask, deviate more and less from the preceding 
theoretical values. These discrepancies can be under- 
stood in terms of the important role played by the 
diverging trajectories in the formation of the 
bordering profile element. 

Another important characteristic feature of the an- 
isotropy is the underetch U, represented by the dis- 
tance OU s in Figs 7 to 9. For  the etched slices which 
are obtained by rotating the reference slice of & about 
the x' axis, it appears that the polar U against 0~ plot 
can be graphically determined using the program for 
the numerical simulation of the dissolution shapes of 

T A B L E  I V  Values  of  the  b o r d e r i n g  angle ,  7, as e s t ima ted  f r o m  

g e o m e t r i c a l  c o n s t r u c t i o n s  (ya)  a n d  as  c o m p u t e d  (u The  i n w a r d  

n o r m a l  n o to  the  e t ched  su r face  lies para l le l  to  OM~ o r  Om~. 

q~0 = 60~ Nm~x = 10 

E x t r e m u m : M  i o r  m i ya  (deg) Ys (deg) 

M 1 117 114 

m a 35 41 

M 2 55 58 

m 2 80 81 

M 3 117 114 

m 3 153 138 

M a 63 66 

m~ 90 95 

q3 o = 60 ~ N , . . ,  = 6 

E x t r e m u m  Ya YN 

M l 117 109 

m 1 55 62 

M 2 117 114 

m 2 145 132 

M 3 63 71 

q)o = 60~ Nmax = 4 
Extremum Y~ YN 

M 1 125 108 

m I 55 67 

M 2 125 108 
mz 55 72 

cylindrical hollow. We have just to store a zero value 
for the radius of the starting circular section. The 
results displayed in Fig. 10 for the three cases studied 
in Section 3.1.1. indicate clearly that the underetch 
presents minima for the orientations corresponding to 
maxima of the dissolution slowness. At this point, it 
should be noted that the polar plots of Fig. 10 can also 
be conveniently used to draw with a relatively good 
approximation the dissolution cross-sectional profiles 
related to the differently oriented slices. 

3.2. Character izat ion of star- l ike structures 
To determine which etchant system is more appropri- 
ate for given specific applications in micromechanics, 
it is necessary to determine the orientation depend- 
ence of the etch rate, i.e. of the dissolution slowness. 
To avoid the necessity to evaluate the normal etch rate 
of a great number of differently, oriented slices, some 
authors [23, 24] have suggested using a star-shaped 
mask with a small angular distance, 13, between the 
segments to pattern the wafer. The interest in such a 
structure comes from the fact that the lateral under- 
etch, UL, is transformed into a radial direction. Then 
for a slice with any orientation we measurea  radial 
underetch, UR, which in reality constitutes an average 
amplified image of the two different lateral under- 
etches UL~ and UL2 associated with a segment of the 
star (Fig. 11). Few experiments on star-like structures 
have been reported in the literature [24-26]. More- 
over, all these works have been performed on (1 0 0) 
and (1 1 0)  oriented wafers of silicon, a material with 
a relatively high degree of symmetry. Therefore it is of 
interest to undertake a more systematic theoretical 
study of star-like structures patterned on non-centro- 
symmetric crystals. For  this purpose the changes in 
U R with the orientation ~,  of a segment are nu- 
merically computed starting from various singly rota- 
ted slices. Since the star mask is composed of succes- 
sive segments whose orientations are defined by an 
angle, ~ lies on a singly rotated slice with q3 -- q3 o and 
0 = 0 ~ The two cross-sectional profiles lying in plane 
(0 y" z") are associated with a direction x", making an 
angle ~P + 13/4 with the direction x'. In these condi- 
tions, all the elements which are incorporated in the 
final dissolution profile are generally connected to 
doubly-rotated surface elements. Thus a display of 
computed results can be accomplished provided the 
angles ~t' and 13, associated with any potentially pre- 
sent element of the cross-sectional profile, were pre- 
cisely evaluated. The program includes two essential 
steps. Firstly, as required for the solution, the com- 
puter provides the two cross-sectional profiles related 
to the two directions x" defined by the angles ~ + 13/4 
and ~ - 13/4, and then calculates the lateral under- 
etches UL1 and UL2. Secondly, geometrical arguments 
are used to compute the average underetch U R as a 
function of the angle ~.  The program takes a rela- 
tively long time (about 1 h) to execute the first step, in 
which for the two cross-sectional profiles a great 
number of elements with converging trajectories must 
be eliminated. Then to reduce the total time of calcu- 
lation we have chosen on the one hand to work with 
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initial profiles composed of successive elements whose 
orientation changes from degree to degree, and on the 
other hand to enter the value of two degrees for the 
input variable [3, in order to repeat the procedure only 
180 times. 

The theoretical U R against �9 polar plots as com- 
puted for ~ o  = 0~ 45~ and 60 ~ are displayed in Fig. 
12a-c, respectively. These figures merit some com- 
ments. 

Firstly, the curve related to q~o = 60~ presents for 
around 50 ~ and 230 ~ a somewhat oscillatory behavi- 
our. This behaviour may be attributed to slight nu- 
merical inaccuracies in the computation.  Effectively, 
discrepancies between the calculated values of UL1 
and UL2 and the exact values can appear  when the 
trajectories of elements in the vicinity of the true 
bordering element markedly diverge, so that for 
successive orientations that differ from one degree, the 
distance between two points forming the etched pro- 
file can become important.  In these conditions a 
truncation error can occur and an intersection I be- 
neath the mask similar to that appearing in Fig. 9f can 
be accidentally masked. To avoid this difficulty, we 
can divide by ten the interval of variation, 8A, for 
successive angles, but after such a modification the 

Figure 10 Changes  in the undere tch  U with the angle  of ro t a t i on  

c~ as given by numer ica l  s imula t ions  s t a r t ing  wi th  var ious  po la r  

d iagrams .  (a) Nma x = 4, fl~o = 60~ (b) Nma x = 6, q~o = 60~ (c) Nma x 

= 10, q~o = 60~ 

program will take a long time to execute and we have 
decided to keep 8 A unchanged. 

For  q0 o = 0 ~ the UR against �9 polar plot satisfies the 
twofold symmetry characteristic of the (1 0 0) crystal. 
However the polar plots related to qo o = 45 ~ (Fig. 12b) 
and % = 60 ~ (Fig. 12c) are apparently symmetrical 
about  the vertical and horizontal axes; such an obser- 
vation cannot be simply understood in terms of the 

t r  

y',y,, 

~ Y  

tt 

/ 
/ .,,X'o'v 

(o) i ~ . / ' ' I  X'; 
UL2 I " j f r  J 

Figure 11 The geomet ry  of a s tar- l ike structure.  
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symmetry of the cubic point group 23. Thus in addi- 
tion, polar graphs of the dissolution slowness are 
given (Figs 13 and 14c) for q~o = 45~ and for a rotation 

Phi = 45 

Loi  3 (b) 

-1 -5.0 5.0 ( 0 . 0  

R a n g  10 

Figure 12 Theoretical polar plots of the radial underetch for a star- 
shaped mask patterned on various singly-rotated wafers. (a) cp o 
= 0 ~ 0o = 0~ (b) (Po = 45~ 0o = 0~ (c) q~o = 60~ 0o = 0 ~ The plots 

are computed for Nm, x = 10. 

angle ~P equal to ~o, 180 - ~o and ~g = 180 + 'Po, 
respectively. It is sufficient to invert Fig. 14c to obtain 
the polar diagram displayed in Fig. 13a. Such a result 
can be understood by remembering that the axis z' is 
identified with the twofold axis [00 1], and that the 
two polar graphs of the dissolution slowness are just 
those contained in the two cross-sectional planes 
transformed under operation 2, then the general shape 
of the polar graph will remain invariant. Comparing 
Fig. 13a and b, it is obvious that we are concerned 
with the same cross-sectional plane. It is therefore not 
surprising that the polar plot of Fig. 13b can be 
considered as the mirror image of the polar plot of Fig. 
13a. When evaluating the two lateral underetches UL1 
and UL2, we can for the sake of simplicity consider 
that we start with an average single polar correspond- 
ing to ~Po- In this condition, to compute UL2 we need a 
region of the original polar graph which is just an 

6- 

6- to) 

~ ~ . . _ ~  M 1 

I I E~ 6 

4 

MI 2 ~  
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lb) 

MZ 

I 
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I 
6 

Figure 13 Polar diagrams of the dissolution slowness as involved in the numerical simulation when cp 0 = 45 ~ and (a) ~P = Wo = 56~ 

Nma x = 10; (b) W = Wo + 180~ Nm,x = 10. 
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Figure 14 Po la r  d i ag rams  of the d i s so lu t ion  s lowness  as involved in the numer ica l  s imula t ion  when q~o = 45~ and (a) Wo = 90~ Nmax = 10; 

(b) tP 0 = 102 ~ Nm. x = 10; (c) Wo = 124~ Nm.x = 10; (d) Wo = 164~ Nm.x = 10. 
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Figure 15 Po la r  d i ag rams  of the d i sso lu t ion  s lowness  co r r e spond ing  to 

Tensor rank = 10 

(b) 

T 

(a) q~o = 150~ (b) q~o = 135~ 

inversion (180 ~ rotation) of the polar diagram yielding 
ULI. Since for the polar plot shown in Fig. 14c UL1 
and UL2 are correlated to the accentuated maxima M 2 

and M' 1, it is left as an exercise for the reader to show 
from rapid geometrical constructions that in the case 
where �9 = ~o and �9 = 180 + ~o the same maxima 
M2 and M'~ are also to be accounted for the estima- 
tion of UL1 and ULZ. From this argument we can 
conclude that the radial underetch U~ remains un- 

changed when the rotation angle q~ takes values re- 
spectively equal to qJo, 180~ - ~o and ~o + 180~ 
leading to the apparent symmetrical situation ob- 
served in Fig. 12b and c. 

It is obvious that the final etched shape of a star-like 
structure patterned on a slice of orientation q~o, 
6 = 0 ~ is not simply connected to the shape of the 
polar graph L (q~o + 90~ 0) located in a plane of 
similar orientation (see for example Fig. 15a and b). As 
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a consequence models that use the etched shapes of 
differently oriented star-like structures to estimate the 
shape of the corresponding polar plots and by exten- 
sion the shape of the dissolutiofi slowness surface do 
not appear as easily workable. 

To discuss, for various values of the angle of cut ~o, 
the etched shapes of the star-like structure we have to 
examine the polar graphs associated with different 
values ~o  of the rotation angle ~.  For a rapid ana- 
lysis, geometrical constructions can be conveniently 
performed to yield the approximate etched shape of 
the cross-sectional profiles and to predict which max- 
ima are responsible for the formation of bordering 
facets. Here we have chosen to restrict our analysis to 
values ~o  of the rotation angle associated with min- 
ima and maxima in the radial underetch UR. For  this 
purpose we undertake a systematic examination of the 
polar graphs illustrated in Figs 14, 16 and 17. 

Starting with a slice of orientation q~o = 0~ we can 
easily show that the minima in UR which occur for ud o 
around 116 ~ and 172 ~ are determined by the two 
accentuated maxima M 2 and M~ in the dissolution 
slowness (Fig. 16b and d). Moreover, the maxima in 
U R observed for Wo -- 90~ and qJo ~ 144~ are directly 
connected to the development of bordering facets 

associated with the less accentuated maxima M 2 and 
M~ as indicated respectively in Fig. 16a and c. We can 
infer that whatever the value of q0 o, the minima in UR 
are produced for particular values of qo for which 
maxima of large amplitude in the polar graph L (Cpo, 
q%) contribute to the development of the bordering 
facets. Conversely maxima in U R are correlated to 
relatively minor maxima in L(q0o, q%). To verify this 
statement, consider the case where ~o = 45~ (Fig. 14). 
For  ~d o = 90 ~ the minimum in U R can be attributed 
to the maxima M 1 and M~ in Fig. 14a. As ud o changes 
from 90 ~ to 102 ~ (Fig. 14b) the amplitude of the 
maximum M 1 which contributes to the lateral etch 
decreases and UR passes through a maximum. As Wo 
takes a value of 124 ~ (Fig. 14c), the bordering facets 
are again associated with major maxima and U R falls 
to a relative minimum (Fig. 12b). Moreover, the sharp 
minimum in UR appearing for ud o around 164 ~ can be 
understood in terms of the maxima of largest ampli- 
tude M 2 and M~ in Fig. 14d. For  q~o = 60~ similar 
treatment can be given to explain the maximum 
and the minimum in UR occurring for Wo = 124~ and 
Wo = 160~ respectively. The minimum in UR is obvi- 
ously due to the two large maxima M~ and M~ in the 
polar graph of Fig. 17b, whereas the maximum in UR 
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Figure 16 Polar diagrams of the dissolution slowness as involved in the numerical simulation when tpo = 0 ~ and (a) W o = 90 ~ Nm.x = 10; 
(b) W o = 116 ~ , Nm~x = 10; {c) W o = 144 ~ Nmax = 10; (d) W o = 172 ~ Nm. x = 10. 
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Figure 17 Polar diagrams of the dissolution slowness as involved in the numerical simulation when q0 o = 60 ~ and (a) ~o  = 124~ N,, , ,  = 10; 

(b) ~o  = 160~ 

results from the relatively minor maximum M 2 in 
L(q0o, ~Po)(Fig. 17a). 

4. Conclusion 
Numerical procedures have been derived to represent 
graphically the etched shapes of crystals with simple 
starting shapes on the one hand, and on the other, the 
cross-sectional dissolution profiles resulting from lo- 
calized etching at the edge of an inert mask. These 
procedures have been compared with theoretical geo- 
metrical constructions based on Wulff's procedure. 
These comparisons show without ambiguity that the 
graphical simulation gives etched profiles with more 
precise geometrical features. Moreover, the important 
role played by diverging trajectories associated with 
elements in the vicinity of limiting facet elements in 
forming the final etched profile is clearly outlined. 

Quantitative information on technical problems 
caused principally by underetching can be also ex- 
tracted from these numerical procedures, in particular 
the changes in the extent of underetching and in the 
value of the bordering angle with orientation can 
easily be evaluated numerically. In addition, theoret- 
ical etched shapes of star-like etching patterns can be 
also drawn using the graphical simulation involving 
the equation of slowness surface. All this precise in- 
formation is necessary when a choice of orientation is 
required to minimize, for example, the lateral etch. 
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